Integrating computer vision with unmanned aerial vehicles (UAVs) has significantly reduced costs and increased accessibility across various applications, enabling advanced capabilities such as visual navigation, localization, and obstacle avoidance. However, current limitations in autonomous navigation systems hinder UAV operation in GPS-denied environments, posing challenges for fully autonomous flights. As the adoption of UAVs expands, developing robust backup strategies is crucial for ensuring safe and reliable navigation in the event of Global Navigation Satellite Systems (GNSS) failures or cyber-attacks. Visual localization emerges as a promising alternative, offering accuracy comparable to or exceeding that of GNSS-based systems. In this paper, we present a Visual Place Recognition-Based Navigation Subsystem for UAVs, specifically designed for GPS-denied environments at high altitudes. Our pipeline addresses key localization challenges, enabling precise positioning even without accurate initial coordinates. We validate the effectiveness of our approach through extensive testing on our proposed dataset “AeroVL”, which covers over 80 km2 of diverse and challenging landscapes, including urban areas, farmlands, and forests.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual Localization system for GPS-Blind Environments in Unmanned Aerial Vehicles


    Beteiligte:
    Murhij, Yazan (Autor:in) / Gavrilov, Dmitriy (Autor:in) / Buzdin, Vladislav (Autor:in) / Kafa, Wissam (Autor:in) / Tatarinova, Elena (Autor:in) / Fateev, Alexei (Autor:in) / Shkatula, Sergey (Autor:in) / Krichevets, Daniil (Autor:in)


    Erscheinungsdatum :

    01.10.2024


    Format / Umfang :

    225979 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Localization of Unmanned Aerial Vehicles in Corridor Environments using Deep Learning

    Padhy, Ram Prasad / Ahmad, Shahzad / Verma, Sachin et al. | ArXiv | 2019

    Freier Zugriff



    Visual observer for unmanned aerial vehicles

    MILLER ERIC / PHILLIPS JACOB DANIEL | Europäisches Patentamt | 2023

    Freier Zugriff