The paper presents IntelliFusion, an algorithm that fuses inductive loop detector data with real-time vehicle probe data obtained from Connected Vehicles to enhance back of the queue estimates. The work also presents an evaluation of the data fusion algorithm using datasets produced by eTEXAS, a microscopic traffic simulation model for signalized intersections. Results of the evaluation show queue length estimates produced by the IntelliFusion algorithm are accurate to within the length of a single vehicle even at low levels of market penetration (e.g., LMP = 20%).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Queue length estimation using conventional vehicle detector and probe vehicle data


    Beteiligte:
    Badillo, B. E. (Autor:in) / Rakha, H. (Autor:in) / Rioux, T. W. (Autor:in) / Abrams, M. (Autor:in)


    Erscheinungsdatum :

    01.09.2012


    Format / Umfang :

    626138 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Queue Length Estimation Based on Probe Vehicle Data at Signalized Intersections

    Huidan Luo / Mingjun Deng / Jia Chen | DOAJ | 2023

    Freier Zugriff


    Probe vehicle lane identification for queue length estimation at intersections

    Rompis, Semuel Y. R. / Cetin, Mecit / Habtemichael, Filmon | Taylor & Francis Verlag | 2018