Accurate localization is an important part of successful autonomous driving. Recent studies suggest that when using map-based localization methods, the representation and layout of real-world phenomena within the prebuilt map is a source of error. To date, the investigations have been limited to 3D point clouds and normal distribution (ND) maps. This paper explores the potential of using OpenStreetMap (OSM) as a proxy to estimate vehicle localization error. Specifically, the experiment uses random forest regression to estimate mean 3D localization error from map matching using LiDAR scans and ND maps. Six map evaluation factors were defined for 2D geographic information in a vector format. Initial results for a 1.2 km path in Shinjuku, Tokyo, show that vehicle localization error can be estimated with 56.3% model prediction accuracy with two existing OSM data layers only. When OSM data quality issues (inconsistency and completeness) were addressed, the model prediction accuracy was improved to 73.1%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluating the Capability of OpenStreetMap for Estimating Vehicle Localization Error


    Beteiligte:
    Wong, Kelvin (Autor:in) / Javanmardi, Ehsan (Autor:in) / Javanmardi, Mahdi (Autor:in) / Gu, Yanlei (Autor:in) / Kamijo, Shunsuke (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    657868 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Evaluating the Capability of OpenStreetMap for Estimating Vehicle Localization Error

    Wong, K / Javanmardi, E / Javanmardi, M et al. | BASE | 2019

    Freier Zugriff

    Exploring OpenStreetMap Capability for Road Perception

    Zheng, Yang / Izzat, Izzat H. | IEEE | 2018


    EXPLORING OPENSTREETMAP CAPABILITY FOR ROAD PERCEPTION

    Zheng, Yang / Izzat, Izzat H. | British Library Conference Proceedings | 2018


    OpenStreetMap for traffic simulation

    Zilske, Michael / Neumann, Andreas / Nagel, Kai | DataCite | 2011

    Freier Zugriff

    Estimating travel demand based on OpenStreetMap in the context of urban digital twins

    Notelaers, Lotte / Tampère, Chris M. J. | TIBKAT | 2022

    Freier Zugriff