For a number of computational purposes, including visualization of scientific data and registration of multimodal medical data, smooth curves must be approximated by polygonal curves, and surfaces by polyhedral surfaces. An inherent problem of these approximation algorithms is that the resulting curves and surfaces appear faceted. Boundary-following and iso-surface construction algorithms are typical examples. To reduce the apparent faceting, smoothing methods are used. In this paper, we introduce a new method for smoothing piecewise linear shapes of arbitrary dimension and topology. This new method is in fact a linear low-pass filter that removes high-curvature variations, and does not produce shrinkage. Its computational complexity is linear in the number of edges or faces of the shape, and the required storage is linear in the number of vertices.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Curve and surface smoothing without shrinkage


    Beteiligte:
    Taubin, G. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    730256 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Curve and Surface Smoothing without Shrinkage

    Taubin, G. / IEEE Computer Society / Technical Committee on Pattern Analysis and Machine Intelligence | British Library Conference Proceedings | 1995


    Curve and surface smoothing by fractal method

    Marignetti,N. / Pomini,M. / Univ.di Ferrara,IT | Kraftfahrwesen | 2001


    Non-Parametric Multiscale Curve Smoothing

    Rosin, P. L. / SPIE | British Library Conference Proceedings | 1993


    On Variational Curve Smoothing and Reconstruction

    Wang, Y. / Wang, D. / Bruckstein, A. M. | British Library Online Contents | 2010


    SPLINE CURVE AND SPIRAL CURVE BASED REFERENCE LINE SMOOTHING METHOD

    MA LIN / ZHU FAN / XU XIN | Europäisches Patentamt | 2021

    Freier Zugriff