We develop a class of differential motion trackers that automatically stabilize when in finite domains. Most differential trackers compute motion only relative to one previous frame, accumulating errors indefinitely. We estimate pose changes between a set of past frames, and develop a probabilistic framework for integrating those estimates. We use an approximation to the posterior distribution of pose changes as an uncertainty model for parametric motion in order to help arbitrate the use of multiple base frames. We demonstrate this framework on a simple 2D translational tracker and a 3D, 6-degree of freedom tracker.
Reducing drift in parametric motion tracking
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001 ; 1 ; 315-322 vol.1
01.01.2001
1019593 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Reducing Drift in Parametric Motion Tracking
British Library Conference Proceedings | 2001
|Reducing drift in differential tracking
British Library Online Contents | 2008
|Relative position tracking using motion sensor with drift correction
Europäisches Patentamt | 2022
|RELATIVE POSITION TRACKING USING MOTION SENSOR WITH DRIFT CORRECTION
Europäisches Patentamt | 2020
|Relative Position Tracking Using Motion Sensor With Drift Correction
Europäisches Patentamt | 2022
|