Visually impaired people (VIPs) have trouble doing daily living activities. Individuals who are visually impaired (VIPs) make up an important percentage of the population. Available models detects one object at a time and are unable to assist VIP's in real time scenario. Improved deep learning attentional dense based object recognition framework for visually impaired people proposed and implemented using spider environment with python. The model implemented using ITM which creates more fused images, Feature maps created using attentional dense module. The network's spatial comprehension is enhanced by the usage of Region Proposal Networks (RPN) and Spatial Information Guided Convolution (SIG Conv). To get ROI data, perception-dependent ROI pooling is employed. The fully linked layer of the network then conducts object detection using the inputs provided. An improved Gannet Optimization algorithm (IGOA) is used to modify the framework's hyper parameters. The proposed model have a testing accuracy of 96.35%, F1 score of 96. 00 % and have the frame processing time of 0.083s which is the best among all other models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Learning Attentional Dense based Indoor Object Recognition for Visually Impaired People




    Erscheinungsdatum :

    22.11.2023


    Format / Umfang :

    624993 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Object Detection and Recognition for Visually Impaired People

    Sasikala Rani K / Jeevitha D | BASE | 2020

    Freier Zugriff

    Traffic signal lamp recognition device for visually impaired people

    SUN XIAODAN / ZHAO YUXIN / WANG DONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Pathfinder for the Visually Impaired People

    Gopika Gopi / Ashna Mathews / Parvathy T Ajay et al. | BASE | 2019

    Freier Zugriff

    Smart Nation: Indoor Navigation for the Visually Impaired

    Leng, Lim Boon / K. G., Smitha / Sinha, Sharad | IEEE | 2019


    Pedestrian crossings for the visually impaired people

    Barbara Rymsza / Krzysztof Kaperczak | DOAJ | 2022

    Freier Zugriff