Advent of unmanned aerial vehicle (UAV) as relay in ad-hoc networks has offered numerous promising communication solutions with both military and civilian applications. Additionally with more degrees of freedom, mobile UAV relaying provides better susceptibility to changing environment conditions thereby enhancing the network performance. However, optimization of UAV altitude is a primary concern in such flying ad hoc networks (FANETs). In this work, we consider a three node decode-and-forward (DF) FANET, and the aim is to minimize the average network outage probability subject to practical mobility constraints of maximum UAV velocity and minimum allowable UAV height, thereby finally optimizing the overall UAV trajectory (UT). In particular, for pre-determined initial and final relay positions, we first prove convexity of the optimization problem and then obtain the semi-closed-form globally optimal UT solution. The analysis is numerically validated along with the discussion of multiple optimal design insights. Results reveal the respective average performance gain of 56% and 37% over the two benchmark schemes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Altitude Optimization for DF Relaying Trajectory of UAV in Cooperative FANET


    Beteiligte:
    Agarwal, Anirudh (Autor:in) / Mishra, Deepak (Autor:in)


    Erscheinungsdatum :

    01.12.2020


    Format / Umfang :

    443545 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Cooperative Resource Allocation in FANET

    Wang, Jingjing / Jiang, Chunxiao | Springer Verlag | 2021


    Communication Channels in FANET

    Wang, Jingjing / Jiang, Chunxiao | Springer Verlag | 2021


    Mobile Edge Computing in FANET

    Wang, Jingjing / Jiang, Chunxiao | Springer Verlag | 2021


    Seamless Coverage Strategies of FANET

    Wang, Jingjing / Jiang, Chunxiao | Springer Verlag | 2021


    A Fast Weighted Clustering Algorithm for FANET

    Wang, Na / Xiao, Meng / Zhao, Zhongliang et al. | IEEE | 2024