The research deals with deep learning-based, voice-operated traffic sign recognition to improve road safety. A deep learning-based model is presented for the recognition of traffic signs with CNN, trained on GTSRB Dataset with an identification and categorization precision of 95%. The developed system detects signs and, through audio warnings by speakers, assists drivers to make quick decisions. The system aims to mitigate accidents caused by missed or misinterpreted signage by alerting drivers to nearby traffic signs and rules. This approach has potential applications in both driver assistance systems and autonomous vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road Safety with Deep Learning Voice Based Traffic Sign


    Beteiligte:


    Erscheinungsdatum :

    28.03.2025


    Format / Umfang :

    433446 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Learning Approach to Classify Road Traffic Sign Images

    Palak / Sangal, A. L. | Springer Verlag | 2021


    VIRTUALIZED ROAD TRAFFIC SIGN GENERATION FOR ENHANCING ROAD SAFETY

    YILMA GIRMA MAMUYE / DEVOTI FRANCESCO / YOUSAF FAQIR ZARRAR | Europäisches Patentamt | 2022

    Freier Zugriff

    VIRTUALIZED ROAD TRAFFIC SIGN GENERATION FOR ENHANCING ROAD SAFETY

    GIRMA MAMUYE YILMA / FRANCESCO DEVOTI / FAQIR ZARRAR YOUSAF | Europäisches Patentamt | 2022

    Freier Zugriff

    Bangladeshi Road Traffic Sign Detection and Navigation Using Deep Learning

    Komol, Tawhid Ahmed / Riti, Rinvi Jaman / Nath, Pulak Deb et al. | IEEE | 2025


    Traffic Sign Classification for Road Safety using CNN

    P, Haree Krishna P / Ravindran, Sindhu / Vijean, Vikneswaran | IEEE | 2024