The incidence of breast cancer in women has increased significantly in recent years. This paper proposes a computer aided diagnostic system for mammographic circumscribed mass detection. The propose method can distinguish between tumours and healthy tissue among various parenchymal tissue patterns. In the first stage the preprocessing and features extraction of the image is done. In this way image segmentation, filtering, contrast improvement and gray level thresholding techniques are applied for enhancing the whole image, and then the features are extracted from the resultant image. In the second part a k-means clustering algorithm is applied. The evaluation of the propose methodology is carried out on Mammography Image Analysis Society (MIAS) dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Circumscribed Mass Detection in Digital Mammograms


    Beteiligte:


    Erscheinungsdatum :

    01.09.2006


    Format / Umfang :

    169791 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Evaluating Classification Strategies for Detection of Circumscribed Masses in Digital Mammograms

    Constantinidis, A. / Fairhurst, M. / Deravi, F. et al. | British Library Conference Proceedings | 1999


    Computerized detection of breast cancer in digital mammograms

    Singh, Laxman / Jaffery, Zainul Abdin | British Library Online Contents | 2018


    Detection of Microcalcifications in Digital Mammograms Images Using Wavelet Transform

    L., Cristina / Ponomaryov, Volodymyr / Sanchez R., J. | IEEE | 2006


    Unsupervised morphological granulometric texture segmentation of digital mammograms

    Baeg, S. / Batman, S. / Dougherty, E. R. et al. | British Library Online Contents | 1999