It is necessary to establish a spatio-temporal correlation model in the traffic data to predict the state of the transportation system. Existing research has focused on traditional graph neural networks, which use predefined graphs and have shared parameters. But intuitive predefined graphs introduce biases into prediction tasks and the fine-grained spatio-temporal information can not be obtained by the parameter sharing model. In this paper, we consider it is crucial to learn node-specific parameters and adaptive graphs with complete edge information. To show this, we design a model based on graph structure that decouples nodes and edges into two modules. Each module extracts temporal and spatial features simultaneously. The adaptive node optimization module is used to learn the specific parameter patterns of all nodes, and the adaptive edge optimization module aims to mine the interdependencies among different nodes. Then we propose a Decoupled Adaptive Graph Convolution Attention Network for Traffic Forecasting (DAGCAN), which relies on the above two modules to dynamically capture the fine-grained spatio-temporal relationships in traffic data. Experimental results on four public transportation datasets, demonstrate that our model can further improve the accuracy of traffic prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    DAGCAN: Decoupled Adaptive Graph Convolution Attention Network for Traffic Forecasting


    Beteiligte:
    Yuan, Qing (Autor:in) / Wang, Junbo (Autor:in) / Han, Yu (Autor:in) / Liu, Zhi (Autor:in) / Liu, Wanquan (Autor:in)


    Erscheinungsdatum :

    01.03.2025


    Format / Umfang :

    1976608 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting

    Liu, Kun / Zhu, Yifan / Wang, Xiao et al. | Transportation Research Record | 2024



    Traffic flow prediction method based on graph attention convolution network

    ZHENG HONG / ZHANG SIKAI / LIU JIAMOU et al. | Europäisches Patentamt | 2020

    Freier Zugriff


    Self-Attention Graph Convolution Imputation Network for Spatio-Temporal Traffic Data

    Wei, Xiulan / Zhang, Yong / Wang, Shaofan et al. | IEEE | 2024