This paper presents a framework for information-theoretic based task assignment of multiple UAVs for searching and tracking moving targets. A stochastic approach which uses probability density functions is introduced as the information gathering metric. This algorithm yields trajectory that minimizes the uncertainty of unknown information. The presented task assignment is based on the negotiation activated when one of the defined conditions is satisfied. This task assignment can generate admissible solutions with minimal computational time. Cost computed by each agent from its information gathering layer is used in the task assignment layer to allocate the priority of tasks for each agent in a decentralized architecture. Our algorithm is validated on a search and track scenario with three fixed-wing UAVs and twelve moving targets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Decentralized information-theoretic task assignment for searching and tracking of moving targets


    Beteiligte:
    Moon, Sangwoo (Autor:in) / Yang, Kwangjin (Autor:in) / Gan, Seng Keat (Autor:in) / Shim, David Hyunchul (Autor:in)


    Erscheinungsdatum :

    01.06.2015


    Format / Umfang :

    547417 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Robust Decentralized Task Assignment for Cooperative UAVs

    Alighanbari, Mehdi / How, Jonathan | AIAA | 2006



    Decentralized Task Assignment for Networked Unmanned Aerial Vehicles

    Szarafinski, Hava / Kiriakidis, Kiriakos | IEEE | 2025


    Consensus-Based Auction Approaches for Decentralized Task Assignment

    Brunet, Luc / Choi, Han-Lim / How, Jonathan | AIAA | 2008