Ultra-dense networks (UDN) are anticipated to fulfill the high-performance demands for future applications of 5G and beyond communication networks. By exploiting recent advances in computer vision techniques, we propose a novel cell association technique, referred to as computer vision-based cell association (CV-CA), that circumvents the cumbersome CSI acquisition. The computer vision technique provides accurate 3D position and determines the line-of-sight communication link of all users within the UDN using RGB images. We demonstrate from the simulations that the proposed CV-CA outperforms 5G-NR and conventional cell association techniques in terms of total data rate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Computer Vision-Based Cell Association for mmWave/THz Ultra-Dense Networks


    Beteiligte:
    Ngo, Khoa Anh (Autor:in) / Moon, Jihoon (Autor:in) / Shim, Byonghyo (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    649945 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Deep Contextual Bandits for Fast Initial Access in mmWave Based User-Centric Ultra-Dense Networks

    Ismath, Insaf / Shashika Manosha, K.B. / Ali, Samad et al. | IEEE | 2021



    Downlink Transmission Scheme Based on Virtual Cell Merging in Ultra Dense Networks

    Xiao, Chiyang / Zeng, Jie / Su, Xin et al. | IEEE | 2016


    Location Based Beamforming in 5G Ultra-Dense Networks

    Kela, Petteri / Costa, Mario / Turkka, Jussi et al. | IEEE | 2016