An optimization problem on the joint content caching and mode selection for slice instances in fog radio access networks (F-RANs) is researched in this paper, characterizing the unknown content popularity distribution and time-varying channel assumptions. In particular, hotspot and vehicle-to-infrastructure scenarios are considered and corresponding network slice instances are orchestrated in F-RANs. Considering different users' demands and limited resources, there exists a significant high complexity in solving the original optimization problem with traditional optimization approaches. Motivated by the advantages of deep reinforcement learning in solving sophisticated network optimizations, a deep reinforcement learning based algorithm is proposed, wherein the cloud server takes intelligent actions to maximize the hit ratio and sum transmit rate. The performances of the proposed algorithm are demonstrated to be significantly improved.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Deep Reinforcement Learning Based Content Caching and Mode Selection for Slice Instances in Fog Radio Access Networks


    Beteiligte:
    Xiang, Hongyu (Autor:in) / Yan, Shi (Autor:in) / Peng, Mugen (Autor:in)


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    267764 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Slice Management in Radio Access Network via Deep Reinforcement Learning

    Khodapanah, Behnam / Awada, Ahmad / Viering, Ingo et al. | IEEE | 2020


    Distributed Edge Caching via Reinforcement Learning in Fog Radio Access Networks

    Lu, Liuyang / Jiang, Yanxiang / Bennis, Mehdi et al. | IEEE | 2019


    Cooperative edge caching via multi agent reinforcement learning in fog radio access networks

    Chang, Q. (Qi) / Jiang, Y. (Yanxiang) / Zheng, F.-C. (Fu-Chun) et al. | BASE | 2022

    Freier Zugriff

    VeSoNet: Traffic-Aware Content Caching for Vehicular Social Networks Using Deep Reinforcement Learning

    Aung, Nyothiri / Dhelim, Sahraoui / Chen, Liming et al. | IEEE | 2023

    Freier Zugriff

    Online Reinforcement Learning of X-Haul Content Delivery Mode in Fog Radio Access Networks

    Moon, Jihwan / Simeone, Osvaldo / Park, Seok-hwan et al. | BASE | 2019

    Freier Zugriff