Keep at hover an aerial vehicle is one of the most important task to realize when working on UAVs. Once this task is solved, the user can easily give high-orders to move the vehicle. In this paper, a nonlinear super-twisting algorithm to stabilize the nonlinear attitude of a quadcopter is presented. The controller is based on the Singular Optimal Control (SOC) and the Lyapunov theory with the sliding mode technique. Its robustness with respect nonlinear and unknown uncertainties is demonstrated in the stability analysis. Simulations results are carried out to illustrate the well performance of the controllers in closed-loop system even in presence of this kind of disturbances. Main graphs corroborate this fact.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonlinear super twisting algorithm for UAV attitude stabilization


    Beteiligte:
    Ibarra, Efrain (Autor:in) / Castillo, Pedro (Autor:in)


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    902873 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Quadrotor attitude controller based on super-twisting algorithm

    Li, Renji / Chang, Zhiyuan / Li, Ke et al. | British Library Conference Proceedings | 2022


    Quadrotor attitude controller based on super-twisting algorithm

    Li, Renji / Chang, Zhiyuan / Li, Ke et al. | SPIE | 2022


    Finite-Time Attitude Control for Rigid Spacecraft Based on Adaptive Super-Twisting Algorithm

    Xia, Yuanqing / Zhang, Jinhui / Lu, Kunfeng et al. | Springer Verlag | 2018


    Super-twisting algorithm with fast super-twisting disturbance observer for steer-by-wire vehicles

    Yang, Yong / Yan, Yunbing / Xu, Xiaowei et al. | SAGE Publications | 2021


    Attitude trajectory tracking of quadrotor UAV using super-twisting observer-based adaptive controller

    Chen, Ai-Jun / Sun, Ming-Jian / Wang, Zhen-Hua et al. | SAGE Publications | 2021