In the rapidly evolving landscape of digital twins (DT) and 6G networks, the integration of large language models (LLMs) presents a novel approach to network management. This paper explores the application of LLMs in managing 6G-empowered DT networks, with a focus on optimizing data retrieval and communication efficiency in smart city scenarios. The proposed framework leverages LLMs for intelligent DT problem analysis and radio resource management (RRM) in fully autonomous way without any manual intervention. Our proposed framework — LINKs, builds up a lazy loading strategy which can minimize transmission delay by selectively retrieving the relevant data. Based on the data retrieval plan, LLMs transform the retrieval task into an numerical optimization problem and utilizing solvers to build an optimal RRM, ensuring efficient communication across the network. Simulation results demonstrate the performance improvements in data planning and network management, highlighting the potential of LLMs to enhance the integration of DT and 6G technologies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    LINKs: Large Language Model Integrated Management for 6G Empowered Digital Twin NetworKs


    Beteiligte:
    Jiang, Shufan (Autor:in) / Lin, Bangyan (Autor:in) / Wu, Yue (Autor:in) / Gao, Yuan (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    2552542 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Twin Scenarios Establishment for Autonomous Vehicle Digital Twin Empowered SOTIF Assessment

    Hou, Zhonglin / Wang, Shouwei / Liu, Hong et al. | IEEE | 2024


    Digital Twin-Empowered Routing Management for Reliable Multi-Hop Millimeter Wave V2X

    Roongpraiwan, Supat / Li, Zongdian / Yu, Tao et al. | IEEE | 2024


    Robot Control via Natural Instructions Empowered by Large Language Model

    Wu, Zihao / Shu, Peng / Li, Yiwei et al. | Springer Verlag | 2024