Scalable systems for automated driving have to reliably cope with an open-world setting. This means, the perception systems are exposed to drastic domain shifts, like changes in weather conditions, time-dependent aspects, or geographic regions. Covering all domains with annotated data is impossible because of the endless variations of domains and the time-consuming and expensive annotation process. Furthermore, fast development cycles of the system additionally introduce hardware changes, such as sensor types and vehicle setups, and the required knowledge transfer from simulation.To enable scalable automated driving, it is therefore crucial to address these domain shifts in a robust and efficient manner. Over the last years, a vast amount of different domain adaptation techniques evolved. There already exists a number of survey papers for domain adaptation on camera images, however, a survey for LiDAR perception is absent. Nevertheless, LiDAR is a vital sensor for automated driving that provides detailed 3D scans of the vehicle’s surroundings. To stimulate future research, this paper presents a comprehensive review of recent progress in domain adaptation methods and formulates interesting research questions specifically targeted towards LiDAR perception.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Survey on Deep Domain Adaptation for LiDAR Perception


    Beteiligte:


    Erscheinungsdatum :

    11.07.2021


    Format / Umfang :

    742150 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LiDAR Domain Adaptation for Perception of Autonomous Vehicles

    Huch, Hans Carl Sebastian | TIBKAT | 2025

    Freier Zugriff

    Cross-Sensor Deep Domain Adaptation for LiDAR Detection and Segmentation

    Rist, Christoph B. / Enzweiler, Markus / Gavrila, Dariu M. | IEEE | 2019


    Unsupervised Evaluation of Lidar Domain Adaptation

    Hubschneider, Christian / Roesler, Simon / Zollner, J. Marius | IEEE | 2020


    Survey on LiDAR Perception in Adverse Weather Conditions

    Dreissig, Mariella / Scheuble, Dominik / Piewak, Florian et al. | IEEE | 2023


    Multi-view deep neural network for LiDAR perception

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff