Intelligent systems for aviation need to be capable of understanding and representing anomalous events as they happen in real-time. We explore this problem with a proof of concept framework based on contextual one-shot learning, run on a human-in-the-loop flight simulator. We ran a total of 24 trials, with variations in training, fliers, and set values within the framework, and found that our framework was able to detect and reason about anomalies in all trials. In future work, we would like to explore different heuristics for anomaly reasoning, including nonlinear interactions of cockpit data, and feedback from the flight crew through psychophysiology sensors or natural language interactions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Knowledge Acquisition in the Cockpit Using One-Shot Learning


    Beteiligte:
    Gizzi, Evana (Autor:in) / Vie, Lisa Le (Autor:in) / Scheutz, Matthias (Autor:in) / Sarathy, Vasanth (Autor:in) / Sinapov, Jivko (Autor:in)


    Erscheinungsdatum :

    01.07.2018


    Format / Umfang :

    2252008 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Cockpit Cockpit

    Trzesniowski, Michael | Springer Verlag | 2019


    Cockpit Cockpit

    Trzesniowski, Michael | Springer Verlag | 2017


    Aircraft cockpit video acquisition and recording system configuration

    LI SHUANG / LI CHAOCHAO / MU CHAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Cockpit pur. Cockpit Design

    Ostle,D. / VDO,Schwalbach,DE | Kraftfahrwesen | 1999


    Cockpit

    Trzesniowski, Michael | Springer Verlag | 2023