This paper proposes an online motor-parameter-estimator for a permanent magnet synchronous motor (PMSM) in an electric vehicle (EV) powertrain. The proposed method uses a recursive least squares filter approach in combination with the discrete time dynamic voltage equations. Stator resistance estimation is decoupled from the estimator using thermal measurements. Compared to conventional approach, the proposed method is more reliable and less noisy since it does not rely on the low contribution of stator resistance in the voltage equation. Both simulations and experiments are carried out to validate the proposed method. A sensitivity analysis shows the approach is robust against rotor position error.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online Parameter Estimation of PMSM in EV Powertrain Including Thermal Measurements


    Beteiligte:
    Zwartbol, Arnout (Autor:in) / Dong, Jianning (Autor:in) / Bauer, Pavol (Autor:in) / Polinder, Henk (Autor:in)


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    1546241 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Load Torque Estimation for Efficient Operation of PMSM-Based Electrified Powertrain

    Safder, Ahmad Hussain / Hanif, Athar / Ahmed, Qadeer | IEEE | 2024


    Reducing range estimation uncertainty with a hybrid powertrain model and online parameter estimation

    Sautermeister, Stefan / Ott, Florian / Vaillant, Moritz et al. | IEEE | 2017


    PMSM Parameter Estimation Using Singular Value Decomposition

    Qaiser, Arslan / McLaughlin, Kevin | SAE Technical Papers | 2018


    PMSM Parameter Estimation Using Singular Value Decomposition

    McLaughlin, Kevin / Qaiser, Arslan | British Library Conference Proceedings | 2018


    Design optimization of a PMSM stator for powertrain applications considering NVH behavior

    Luzardo, Esteban J. / Galluzzi, Renato / Escobar, Gerardo et al. | IEEE | 2024