Unmanned aerial vehicles (UAVs) have the advantage of providing communication services for ground vehicles due to their high mobility and other characteristics. However, in urban environments, vehicles-UAV communication links are vulnerable to obstructions. Therefore, we introduce a UAV edge computing network with RIS enhancement to optimize vehicle throughput by adjusting task offloading, RIS phase shifts, transmission power, and computing resources. We tackle the nonconvex optimization problem using block coordinate descent and successive convex approximation, showing through simulations that our method surpasses others.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reconfigurable Intelligent Surface-Assisted Offloading Strategy for UAV-Enabled Vehicle Edge Computing Networks


    Beteiligte:
    Han, Jie (Autor:in) / Bao, Weijie (Autor:in) / Liu, Qian (Autor:in)


    Erscheinungsdatum :

    26.10.2023


    Format / Umfang :

    872390 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Intelligent Offloading Balance for Vehicular Edge Computing and Networks

    Wu, Yu / Fang, Xuming / Min, Geyong et al. | IEEE | 2025



    Secure Task Offloading Design for UAV- Enabled NOMA Mobile Edge Computing Networks

    Nguyen, Nam T. / Truong, Truong V. / Ha, Duyen M. et al. | IEEE | 2024


    Resource Allocation and Offloading Strategy for UAV-Assisted LEO Satellite Edge Computing

    Hongxia Zhang / Shiyu Xi / Hongzhao Jiang et al. | DOAJ | 2023

    Freier Zugriff