To better solve the passenger assignment problem, which is a subproblem of the transit network optimization problem, we build an artificial urban transit system (AUTS) and adopt a day-to-day learning mechanism to describe passengers' route and departure-time-choice behaviors. With the support of AUTS to handle the lower level assignment problem, we are able to solve the upper level transit network design problem. Compared with other bilevel models, our approach better accommodates passengers' dynamic learning behavior and their heterogeneity. Based on AUTS, we solve the frequency optimization problem and compare the results with an analytical method. We also perform some numerical experiments on AUTS and discover some interesting issues on the capacity of public transportation system and passengers' heterogeneity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Agent-Based Simulation and Optimization of Urban Transit System


    Beteiligte:
    Zhang, Guangzhi (Autor:in) / Zhang, Han (Autor:in) / Li, Lefei (Autor:in) / Dai, Chenxu (Autor:in)


    Erscheinungsdatum :

    01.04.2014


    Format / Umfang :

    520054 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Agent-Based Simulation for Optimization of Bus Transit Lines

    Huang, Jiangyan / Liu, Zhiyuan / Fu, Xiao et al. | ASCE | 2019


    Network Optimization of Conventional Public Transit Based on Urban Rail Transit

    Du, Mingyang / Cheng, Lin / Huang, Liqiang et al. | ASCE | 2018


    Simulation-Based Rail Transit Optimization Model

    Kim, Myungseob | Online Contents | 2013


    Simulation-Based Rail Transit Optimization Model

    Kim, Myungseob (Edward) / Schonfeld, Paul / Kim, Eungcheol | Transportation Research Record | 2013