In this paper, a longitudinal model of hypersonic vehicle with variable geometry inlet is established. Because of the strict requirements for the angle of attack of the scramjet during the flight of the aircraft, the uncertainty introduced by the parameter fitting, the rotating lip cover in the longitudinal model, and the uncertain external interference of the aircraft. The dynamic surface control technology is used to design the angle of attack autopilot of the aircraft and the Radial basis function (RBF) neural network is used to realize the adaptive approximation of the uncertain part of the model, to suppress the interference and accurately track the instructions. Finally, the simulation results show that the method can effectively control the angle of attack of hypersonic vehicle with variable geometry inlet, meet the performance requirements and verify the correctness of the method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive neural network dynamic surface control of hypersonic vehicle with variable geometry inlet


    Beteiligte:
    Mengqi, Qiu (Autor:in) / Yanze, Hou (Autor:in) / Changxiu, Liu (Autor:in) / Shaohua, Qiu (Autor:in)


    Erscheinungsdatum :

    19.11.2022


    Format / Umfang :

    1166964 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Numerical and Experimental Analysis of a Hypersonic Variable Geometry Inlet

    Mrozinski, D. P. / Hayes, J. R. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 1999