This paper presents a comparative analysis of the application of Variational Autoencoders (VAE) and Wasserstein Generative Adversarial Networks (WGAN) for detecting anomalous images. The performance evaluation of the models is conducted using metrics such as AUC, Precision, Recall, and F1-Score. The results indicate that VAEs provide high Recall in anomaly detection but with low Precision, whereas WGANs demonstrate more balanced results with fewer false positives. Recommendations are proposed for selecting an appropriate model depending on the specific task requirements and the need to minimize false alarms or achieve high detection completeness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparative Analysis of the Use of Variational Autoencoders and Generative Adversarial Networks for Anomalous Image Detection Tasks


    Beteiligte:


    Erscheinungsdatum :

    22.10.2024


    Format / Umfang :

    3399705 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch