Accurate wind speed prediction is a essential for enhanced wind energy integration with grid. A hybrid forecasting model is implemented to improve prediction accuracy. Decomposition technique is utilized to separate the input training wind speed data into intrinsic mode functions (IMFs). Deep neural network is used for the feature learning from each sub-series signal. Thus, the developed approach is tested with National Institute of Wind Energy (NIWE) dataset. Experimental evaluation in terms of statistical indices confirms that proposed hybrid model outperforms the existing benchmark approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Wind speed prediction using hybrid long short-term memory neural network based approach


    Beteiligte:
    Yadav, G. Rakesh (Autor:in) / Muneender, E. (Autor:in) / Santhosh, M. (Autor:in)


    Erscheinungsdatum :

    21.01.2021


    Format / Umfang :

    574601 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network

    Yeon, Kyuhwan / Min, Kyunghan / Shin, Jaewook et al. | Springer Verlag | 2019


    Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network

    Yeon, Kyuhwan / Min, Kyunghan / Shin, Jaewook et al. | Online Contents | 2019