Navigating through intersections is one of the main challenging tasks for an autonomous vehicle. However, for the majority of intersections regulated by traffic lights, the problem could be solved by a simple rule-based method in which the autonomous vehicle behavior is closely related to the traffic light states. In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided. We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step. We demonstrate that agents learn both the basic rules needed to handle intersections by understanding the priorities of other learners inside the environment, and to drive safely along their paths. Moreover, a comparison between our system and a rule-based method proves that our model achieves better results especially with dense traffic conditions. Finally, we test our system on real world scenarios using real recorded traffic data, proving that our module is able to generalize both to unseen environments and to different traffic conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    End-to-End Intersection Handling using Multi-Agent Deep Reinforcement Learning


    Beteiligte:


    Erscheinungsdatum :

    11.07.2021


    Format / Umfang :

    1762068 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intersection decision-making method based on multi-agent deep reinforcement learning

    DU YU / JIANG ANNI / ZHAO SHIXIN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    A Deep Reinforcement Learning Agent for Traffic Intersection Control Optimization

    Garg, Deepeka / Chli, Maria / Vogiatzis, George | IEEE | 2019




    Large-Scale Mixed-Traffic and Intersection Control using Multi-agent Reinforcement Learning

    Liu, Songyang / Fan, Muyang / Li, Weizi et al. | ArXiv | 2025

    Freier Zugriff