Road traffic accidents pose a significant threat to both developed and developing nations, prompting global efforts to enhance road safety. With cars and drivers on the roads, pedestrians also face risks, often becoming innocent victims of accidents. Various factors contribute to road accidents, including driving under the influence, weather conditions, speed, road type, light conditions, road surface, and design. These accidents can cause severe, sometimes unseen injuries with lasting health implications. This study aims to explore road accidents in India using the random forest classifier algorithm and machine learning techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    AIML for Road Accident Analysis


    Beteiligte:


    Erscheinungsdatum :

    22.11.2024


    Format / Umfang :

    424822 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    aiml AIML SMART VERTIPORT IN A BOX AUTONOMOUS MULTIMODAL PHYSICAL AND DIGITAL INFRASTRUCTURE

    MICHELE DICOSOLA | Europäisches Patentamt | 2025

    Freier Zugriff

    Image Based Spacecraft Health Evaluation by AIML Based Expert System

    Dai, Bijoy Kumar / Paul, Debashish / Priyanka et al. | IEEE | 2024


    AIML SMART VERTIPORT IN A BOX AUTONOMOUS MULTIMODAL PHYSICAL AND DIGITAL INFRASTRUCTURE

    DICOSOLA MICHELE | Europäisches Patentamt | 2024

    Freier Zugriff

    Road Accident Analysis Factors

    Esmaeeli, H. / Abbaszadehfallah, I. / Chepuan, O.B. et al. | British Library Conference Proceedings | 2013


    Road Accident Analysis Factors

    Esmaeeli, Hamed / Abbaszadehfallah, Iman / Bin Chepuan, Othman et al. | Tema Archiv | 2012