Vehicular edge computing (VEC) has become a promising solution in electric vehicle (EV) utilization. However, the uneven geographical distribution of service requests may lead to load imbalances among edge servers in different clusters. Thus, the integration of task offloading (TO) and resource allocation (RA) is pivotal for achieving optimal performance in edge computing systems. In this study, we explore an efficient collaborative scheme for task offloading and resource allocation across multiple edge network areas. Initially, we model the Multi-Edge System Delay (MESD) by considering the average end-to-end delay in the system. Subsequently, we introduce the concept of request redistribution using a load-balancing approach to simplify the joint TO & RA problem into a manageable RA problem. Our algorithm mathematically formulates the MESD model and employs a heuristic method to address the formulated problem. Finally, we have compared our proposed work with several baselines and the results confirm the effectiveness of the proposed mechanism.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Collaborative Vehicular Edge Computing Design for Delay-Sensitive Applications


    Beteiligte:
    Voon, Jing-Yang (Autor:in) / Chiang, Yao (Autor:in) / Jia, Cheng-Rui (Autor:in) / Wei, Hung-Yu (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    428490 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Collaborative Task Processing in Vehicular Edge Computing Networks

    Bai, Xiao / Chen, Shanzhi / Shi, Yan et al. | IEEE | 2021


    A Collaborative Task Offloading Scheme in Vehicular Edge Computing

    Bute, Muhammad Saleh / Fan, Pingzhi / Liu, Gang et al. | IEEE | 2021



    Risk-sensitive task fetching and offloading for vehicular edge computing

    Batewela, S. (Sadeep) / Liu, C.-F. (Chen-Feng) / Bennis, M. (Mehdi) et al. | BASE | 2019

    Freier Zugriff