Artificial Intelligence (AI) shows promising applications for the perception and planning tasks in autonomous driving (AD) due to its superior performance compared to conventional methods. However, highly complex AI systems exacerbate the existing challenge of safety assurance of AD. One way to mitigate this challenge is to utilize explainable AI (XAI) techniques. To this end, we present the first comprehensive systematic literature review of explainable methods for safe and trustworthy AD. We begin by analyzing the requirements for AI in the context of AD, focusing on three key aspects: data, model, and agency. We find that XAI is fundamental to meeting these requirements. Based on this, we explain the sources of explanations in AI and describe a taxonomy of XAI. We then identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation. Finally, we propose a conceptual modular framework called SafeX to integrate the reviewed methods, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review


    Beteiligte:
    Kuznietsov, Anton (Autor:in) / Gyevnar, Balint (Autor:in) / Wang, Cheng (Autor:in) / Peters, Steven (Autor:in) / Albrecht, Stefano V. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.12.2024


    Format / Umfang :

    3471875 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Trusting Explainable Autonomous Driving: Simulated Studies

    Goldman, Claudia V. / Bustin, Ronit | IEEE | 2022


    Image transformer for explainable autonomous driving system

    Dong, Jiqian / Chen, Sikai / Zong, Shuya et al. | IEEE | 2021


    Grounded Relational Inference: Domain Knowledge Driven Explainable Autonomous Driving

    Tang, Chen / Srishankar, Nishan / Martin, Sujitha et al. | IEEE | 2024