In this paper, we present a novel and effective approach to truck and trailer classification, which integrates deep learning models and conventional image processing and computer vision techniques. The developed method groups trucks into subcategories by carefully examining the truck classes and identifying key geometric features for discriminating truck and trailer types. We also present three discriminating features that involve shape, texture, and semantic information to identify trailer types. Experimental results demonstrate that the developed hybrid approach can achieve high accuracy with limited training data, where the vanilla deep learning approaches show moderate performance due to over-fitting and poor generalization. Additionally, the models generated are human-understandable.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Truck and Trailer Classification With Deep Learning Based Geometric Features


    Beteiligte:
    He, Pan (Autor:in) / Wu, Aotian (Autor:in) / Huang, Xiaohui (Autor:in) / Scott, Jerry (Autor:in) / Rangarajan, Anand (Autor:in) / Ranka, Sanjay (Autor:in)


    Erscheinungsdatum :

    01.12.2021


    Format / Umfang :

    2129756 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    TRUCK TRAILER INTERFACE

    STAAHL CHRISTIAN / FRY MATTHEW / RETTER JOCHEN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    TRUCK TRAILER INTERFACE

    STAAL CHRISTIAN / FRY MATTHEW / RETTER JOCHEN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    TRUCK TRAILER INTERFACE

    STAAL CHRISTIAN / FRY MATTHEW / RETTER JOCHEN et al. | Europäisches Patentamt | 2019

    Freier Zugriff

    Truck trailer interface

    STOLL CHRISTIAN / MEIDL MICHAEL | Europäisches Patentamt | 2025

    Freier Zugriff