Automatic modulation classification (AMC) is essential in non-orthogonal multiple access (NOMA) systems, since it enables dynamic adaptation of modulation schemes to optimize spectral efficiency and reduce inter-user interference. To address the AMC of the interference users in NOMA downlink systems, a lightweight Dual-Pool convolutional neural network (Dual-Pool CNN) algorithm is proposed, which leverages the power of the pooling layers in CNNs for better classification accuracy. It synergistically combines max-pooling and average-pooling to extract both general as well as sharp features from the distorted, faded, and superposed constellation diagrams. Our extensive experimentation demonstrates that the proposed model can classify the signals of four different modulation schemes with an accuracy score of more than 90% at an SNR of 14 dB and above. Moreover, this higher accuracy is obtained at lower computational complexity using the superposed constellation density grid (SCDG) approach followed by lightweight Dual-Pool CNN architecture.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modulation Classification in NOMA Systems using Lightweight Dual-Pooling CNN with Superposed Constellation Density Grids (SCDGs)


    Beteiligte:


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    3271216 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-layer Constellation based Is-OWC employing NOMA

    Tachikawa, Wataru / Ashish, Ajgaonkar Swarali / Yoshii, Kazutoshi et al. | IEEE | 2022


    Downlink Non-Orthogonal Multiple Access (NOMA) Constellation Rotation

    Zhang, Jian / Wang, Xin / Hasegawa, Tsuyoshi et al. | IEEE | 2016


    Relay-Satellite-Assisted LEO Constellation NOMA Communication System

    Zhang, Xuyang / Yue, Xinwei / Han, Zhihao et al. | IEEE | 2025



    On the Power Allocation and Constellation Selection in Downlink NOMA

    Cejudo, Estela Carmona / Zhu, Huiling / Alluhaibi, Osama | IEEE | 2017