Vehicular networks focus on improving traffic and safety concerns in an Intelligent Transportation System (ITS). However, the presence of misbehaving nodes can drastically impact the safety, traffic and other applications offered by ITS. Misbehavior detection forms an important mechanism in an ITS to detect and mitigate the effect of misbehaving nodes. The proposed work focuses on analyzing the performance of popular machine learning algorithms for misbehavior detection in VANETs. The effect on performance pre and post-regulation is also highlighted. VEREMI dataset is used as the dataset of choice for the analysis


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine Learning for Misbehavior Detection in Intelligent Transportation Systems Using BSM Data


    Beteiligte:
    Lone, Faisal Rasheed (Autor:in) / Nazir, Azra (Autor:in) / Gupta, Ankur (Autor:in) / Sawhney, Sahil (Autor:in) / Ahmed, Suhaib (Autor:in)


    Erscheinungsdatum :

    28.11.2024


    Format / Umfang :

    578978 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Local perception and BSM based misbehavior detection in Intelligent Transportation System

    Gyawali, Sohan / Shimizu, Takayuki / Lu, Hongsheng et al. | IEEE | 2022


    MISBEHAVIOR DETECTION AND INTERVENTION

    ADITHTHAN ARUN / ISLAM MD MHAFUZUL / PERANANDAM PRAKASH M et al. | Europäisches Patentamt | 2025

    Freier Zugriff


    TriP: Misbehavior Detection for Dynamic Platoons using Trust

    Garlichs, Keno / Willecke, Alexander / Wegner, Martin et al. | IEEE | 2019


    MISBEHAVIOR DETECTION IN AUTONOMOUS DRIVING COMMUNICATIONS

    YANG LIUYANG LILY / SASTRY MANOJ R / LIU XIRUO et al. | Europäisches Patentamt | 2020

    Freier Zugriff