Pose estimation is one of the key issues in the research of intelligent vehicles. In this paper, a real-time pose estimation algorithm based on vision is proposed and implemented. The ground plane assumption is used to simplify the interframe motion model to a 2D plane motion model, which reduces the computation and avoids the difficulty in feature point selection in outdoor environments. This algorithm is composed of two parts: the Gradient Angle Histogram algorithm and the Iterative Gradient Closest Point algorithm. The fusion of these two algorithms successfully addresses the local minimum problem and the high computation problem with the ICP algorithm. Experimental results with both synthetic data and real data prove the high accuracy, low computation, and high robustness to outliers in this algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision based real-time pose estimation for intelligent vehicles


    Beteiligte:
    Ming Yang, (Autor:in) / Qian Yu, (Autor:in) / Hong Wang, (Autor:in) / Bo Zhang, (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    773518 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vision based Real-Time Pose Estimation for Intelligent Vehicles

    Yang, M. / Yu, Q. / Wang, H. et al. | British Library Conference Proceedings | 2004


    Real-time bounded-error pose estimation for road vehicles using vision

    Napier, A / Sibley, G / Newman, P | IEEE | 2010


    Real time vision for intelligent vehicles

    Gavrila, D.M. / Franke, U. / Wohler, C. et al. | Tema Archiv | 2001


    A real-time vision for intelligent vehicles

    Ninomiya, Y. / Matsuda, S. / Ohta, M. et al. | IEEE | 1995


    A Real-Time Vision for Intelligent Vehicles

    Ninomiya, Y. / Matsuda, S. / Ohta, M. et al. | British Library Conference Proceedings | 1995