This paper investigates the effectiveness of incorpo-rating intent sharing messages into Cooperative Adaptive Cruise Control (CACC) systems. In contrast to traditional information exchange limited to current state information, intent sharing involves providing details about the future trajectory of connected vehicles. This work employs a concise representation of the intent of a connected vehicle, encompassing anticipated speed and acceleration bounds. The proposed approach, referred to as intent sharing-based CACC (I-CACC), utilizes a reinforcement learning-based controller that leverages this additional intent information. Through an extensive simulation study using experimental datasets, we compare the performance of I-CACC to conventional CACC. The results reveal the superior performance of I-CACC across various metrics, encompassing safety, comfort, string stability, and gap-keeping.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Cooperative Adaptive Cruise Control Based on Intent Sharing Messages and Reinforcement Learning


    Beteiligte:


    Erscheinungsdatum :

    29.05.2024


    Format / Umfang :

    715405 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Cooperative Perception Based on Intent Sharing Messages

    Avedisov, Sergei S. / Sakr, Ahmed Hamdi / Higuchi, Takamasa et al. | IEEE | 2023




    Blockchain-Integrated Multiagent Deep Reinforcement Learning for Securing Cooperative Adaptive Cruise Control

    Raja, Gunasekaran / Kottursamy, Kottilingam / Dev, Kapal et al. | IEEE | 2022