We present an overview of the most common techniques used in automatic speech recognition to adapt a general system to a different environment (known as cross-task adaptation) such as in an air traffic control system (ATC). The conditions present in ATC are very specific: very spontaneous, the presence of noise, and high speed speech. So, with a typical speech recognizer the recognition results are unsatisfactory. We have to decide on the best option for the modeling: to develop acoustic models specific to those conditions from scratch using the data available for the new environment, or to carry out cross-task adaptation starting from reliable HMM models (usually requiring less data in the target domain). We begin with a description of the main techniques considered for cross-task adaptation, namely maximum a posteriori (MAP), maximum likelihood linear regression (MLLR), and the two together. We have applied each in two speech recognizers for air traffic control tasks, one for spontaneous speech and the other for a command interface. We show the performance of these techniques and compare them with the development of a new system from scratch. We also show the results obtained for speaker adaptation using a variable amount of adaptation data. The main conclusion is that MLLR can outperform MAP when a large number of transforms is used, and MLLR followed by MAP is the best option. All of these techniques are better than developing a new system from scratch, showing the effectiveness of mean and variance adaptation
Air traffic control speech recognition system cross-task & speaker adaptation
IEEE Aerospace and Electronic Systems Magazine ; 21 , 9 ; 12-17
01.09.2006
940558 byte
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Air Traffic Control Speech Recognition System Cross-Task & Speaker Adaptation
Online Contents | 2006
|Speaker Adaptation Through Spectral Transformation for HMM Based Speech Recognition
British Library Conference Proceedings | 1994
|Minimum effort adaptation of automatic speech recognition system in air traffic management
DOAJ | 2025
|Mathematical Analysis and Speaker-Independent Speech Recognition
British Library Online Contents | 1996
|