Deep learning (DL)-based beam training schemes have enhanced the transmission capacity for intelligent reflecting surface (IRS)-assisted millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Nevertheless, the effects of noise and model complexity are still bottlenecks for most of those approaches. In this paper, we propose a hybrid convolutional neural network (CNN) encoder-based Transformer (HCNT) DL model containing robust channel expression and a scoring-based optimal beam decision. First, the hybrid CNN encoder parallelly tackles the real and imaginary components of the sampled channel collected by active sensors of the adopted semi-passive IRS with the grouped and point-wise convolution as the alternative to the complicated serial process. Second, we convert the continuous channel expression into binary sequences by leaky integrated-and-fire (LIF) mechanism seeking a robust representation against the noise effects. Finally, feature attention mechanism determines the prediction of the optimal beam by the scores of the relationship between potential direction and quantized binary tokens. Experimental results show that the proposed HCNT outperforms the existing schemes achieving a higher spectral efficiency under different noise levels with lower complexity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    IRS-Assisted mmWave Massive MIMO Systems Beam Training with Hybrid CNN Encoder-based Transformer Deep Learning Model


    Beteiligte:
    Urakami, Taisei (Autor:in) / Jia, Haohui (Autor:in) / Chen, Na (Autor:in) / Okada, Minoru (Autor:in)


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    1704047 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Transformer-based Predictive Channel Estimation for mmWave Massive MIMO Systems

    Ju, Hyungyu / Jeong, Seokhyun / Lee, Byungju et al. | IEEE | 2024


    Beam Squint Effect in Multi-Beam mmWave Massive MIMO Systems

    Afeef, Liza / Arslan, Huseyin | IEEE | 2022




    Beam Prediction for mmWave Massive MIMO using Adjustable Feature Fusion Learning

    Yang, Sicheng / Ma, Jianpeng / Zhang, Shun et al. | IEEE | 2022