This informational collection is utilized to anticipate the odds of an event of heart assault for a patient. In the season of cutting edge smartphones contributing 12 attributes is not feasible. We play out the product metric examination on the given informational collection. In view of the investigation of information we try to bring the total number of attributes into a small figure and in the end, we may be able to choose which property can be considered and which characteristic can be disregarded.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Decision making system using machine learning and Pearson for heart attack


    Beteiligte:


    Erscheinungsdatum :

    01.04.2017


    Format / Umfang :

    252725 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    On non-Randomized Hard Decision Fusion Under Neyman-Pearson Criterion Using LRT

    Mohammad, Fayazur Rahaman / Mohammed, Zafar Ali Khan | IEEE | 2018


    An Autonomous Attack Decision-Making Method Based on Hierarchical Virtual Bayesian Reinforcement Learning

    Wang, Dinghan / Zhang, Jiandong / Yang, Qiming et al. | IEEE | 2024

    Freier Zugriff

    The pearson rotary aileron

    Engineering Index Backfile | 1930


    The Pearson rotary aileron

    Engineering Index Backfile | 1930


    The Pearson Rotary Aileron

    Emerald Group Publishing | 1930