The goal of this research is to develop multilayer neural network topology for Independent Component Analysis (ICA) which maximizes the entropy of the outputs with logistic transfer function. The purpose of the hidden layers is: a) whitening of the input data for yielding good separation results; b) separation of the independent sources (components); c) estimation of the basis vectors. The performed simulations were based on different choice of source signals, noise and parameters of the mixing matrices in order to study the ability of the NN to solve the blind source separation problem. We compare the results with those received by Karhunen-Oja nonlinear PCA algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Blind Source Separation with Neural Networks: Demixing Sources From Mixtures with Different Parameters


    Beteiligte:


    Erscheinungsdatum :

    01.10.2006


    Format / Umfang :

    10361154 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Convolutive Blind Source Separation for Noisy Mixtures

    Aichner, R. / Buchner, H. / Kellermann, W. | British Library Conference Proceedings | 2004


    Blind separation of instantaneous mixtures of impulsive stable sources

    Sahmoudi, M. / Abed-Meraim, K. / Benidir, M. | IEEE | 2003



    Blind Separation of Instantaneous Mixtures of Impulsive Alpha-Stable Sources

    Sahmoudi, M. / Abed-Meraim, K. / Benidir, M. et al. | British Library Conference Proceedings | 2003


    Demixing Behaviour of Immiscible Aqueous Two Phase Mixtures in Reduced Gravity

    Brooks, D. E. / Janzen, J. / Norris-Jones, R. et al. | British Library Conference Proceedings | 1992