The objective of this research project was to improve Multi-Agent Reinforcement Learning performance in the StarCraft II environment with respect to faster training times, greater stability, and higher win ratios by 1) creating an adaptive action selector we call Adaptive Average Exploration, 2) using experiences previously learned by a neural network via Transfer Learning, and 3) updating the network simultaneously with its random action selector epsilon. We describe how agents interact with the StarCraft II environment and the QMIX algorithm used to test our approaches. We compare our AAE action selection approach with the default epsilon greedy method used by QMIX. These approaches are used to train Transfer Learning (TL) agents under a variety of test cases. We evaluate our TL agents using a predefined set of metrics. Finally, we demonstrate the effects of updating the neural networks and epsilon together more frequently on network performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Average Exploration in Multi-Agent Reinforcement Learning


    Beteiligte:
    Hall, Garrett (Autor:in) / Holladay, Ken (Autor:in)


    Erscheinungsdatum :

    11.10.2020


    Format / Umfang :

    1242761 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Exploration of Multi-Agent Reinforcement Learning for ISR Flight Path Planning

    Xie, Lynphone Mark / Conway, Emily / Cheng, Huaining et al. | IEEE | 2024


    MARLAS: Multi Agent Reinforcement Learning for Cooperated Adaptive Sampling

    Pan, Lishuo / Manjanna, Sandeep / Hsieh, M. Ani | Springer Verlag | 2024


    Traffic adaptive control method based on multi-agent reinforcement learning

    HUANG HUA / ZHANG WEI / LI XIAOLONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Coordinated Multi-Robot Exploration using Reinforcement Learning

    Mete, Atharva / Mouhoub, Malek / Farid, Ali Moltajaei | IEEE | 2023


    Multi-agent reinforcement learning method for fair adaptive traffic signal control

    ZHANG CHENGWEI / FANG WANQING / ZHAO XINTIAN | Europäisches Patentamt | 2023

    Freier Zugriff