Recently, the passive bistatic radar (PBR) that exploits frequency modulation (FM) radio transmitters as illuminators, has witnessed widespread usage owing to its various advantages. However, the characteristics of FM-radio-based PBR result in interference components in the range–Doppler (RD) map, which may increase false alarms. Therefore, this study proposes a method for suppressing interference components using a deep learning approach. The two main contributions of this study are as follows. First, a convolutional autoencoder model capable of effectively suppressing interference in the RD map of the PBR was proposed. Second, a synthetic RD map dataset generation method that can enable the autoencoder to operate robustly in PBR in a real environment was presented. Further, a performance comparison between the proposed method and existing methods using simulated data proved that the deep learning-based method exhibited superior target detection performance. Furthermore, using the data recorded by the PBR in a real environment, the proposed autoencoder model was shown to effectively suppress interference components in a real interference environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Interference Suppression for an FM-Radio-Based Passive Radar via Deep Convolutional Autoencoder


    Beteiligte:
    Park, Do-Hyun (Autor:in) / Park, Geun-Ho (Autor:in) / Park, Ji-Hun (Autor:in) / Bang, Jong-Hyeon (Autor:in) / Kim, Doohwan (Autor:in) / Kim, Hyoung-Nam (Autor:in)


    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    2931938 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Side Peaks Interference Suppression in DVB-T Based Passive Radar

    Ran Tao / Zhiwen Gao / Yue Wang | IEEE | 2012


    Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities

    Seyfioglu, Mehmet Saygin / Ozbayoglu, Ahmet Murat / Gurbuz, Sevgi Zubeyde | IEEE | 2018



    Cochannel Interference in DTMB-Based Passive Radar

    Lu, Min / Yi, Jianxin / Wan, Xianrong et al. | IEEE | 2019


    Radio interference -- Investigation, suppression, and control

    Merriman, H.O. / Nixon, F.G. | Engineering Index Backfile | 1939