In this work, we investigate an uplink unmanned aerial vehicles (UAVs)-enabled intelligent transportation system to collect data from traveling vehicles on a specific highway road. To ensure the freshness of information delivered from the traveling vehicles to UAV base stations, we use the new age of information (AoI) metric to characterize the information freshness and formulate the AoI minimization problem by optimizing the UAVs’ trajectories and the communication time of vehicles jointly. In order to handle the mixed-integer nonlinear problem, a multi-agent deep reinforcement learning scheme is proposed by applying independent flight direction and time slot action spaces, in which each UAV working as an independent agent adjusts to the dynamic environment quickly based on stored experience. The AoI-related reward function is proposed to select the beneficial action space to guarantee the information freshness. Numerical simulation results show the proposed scheme outperforms the benchmark schemes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Age of Information Optimization in UAV-enabled Intelligent Transportation System via Deep Reinforcement Learning


    Beteiligte:
    Li, Xinmin (Autor:in) / Li, Jiahui (Autor:in) / Yin, Baolin (Autor:in) / Yan, Jiaxin (Autor:in) / Fang, Yuan (Autor:in)


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    1630076 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch