This paper introduces a Smart Traffic Management System (STMS)employing RF sensors, cameras, and machine learning algorithms to monitor and optimize urban traffic. The system dynamically adjusts traffic signal timings, offers real-time route recommendations based on GPS data, and incorporates adaptive control mechanisms to reduce congestion and improve overall mobility. Simulation studies and real-world testing demonstrate the effectiveness of the STMS in enhancing traffic flow, minimizing waittimes, and contributing to sustainable urbandevelopment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Smart Traffic Management System for Urban Mobility Enhancement Using RF Sensors, Cameras, and Machine Learning


    Beteiligte:
    G, Vivekanandan (Autor:in) / J, Pathmanaban (Autor:in) / Godwin James, Prabahar (Autor:in) / Sree S, Barani (Autor:in) / V, Priyanka (Autor:in) / V M, Samvardhini (Autor:in)


    Erscheinungsdatum :

    08.10.2024


    Format / Umfang :

    598068 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Urban Traffic Management using Machine Learning

    Bharti, Ankit / Hasnani, Rohit / Priyadarshan, Manish et al. | IEEE | 2022


    TRAFFIC MANAGEMENT SYSTEM FOR URBAN AIR MOBILITY

    KIM MIN CHUL / BAE JAE DUK / CHOI HYUN SEOK et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Smart Traffic Light System Using Machine Learning

    Natafgi, Mohamad Belal / Osman, Mohamad / Haidar, Asser Sleiman et al. | IEEE | 2018



    Traffic Management for Urban Air Mobility

    Bharadwaj, Suda / Carr, Steven / Neogi, Natasha et al. | British Library Conference Proceedings | 2019