We present in this correspondence an improved sequential Monte Carlo (SMC) filter for ballistic target tracking with random, time-varying ballistic coefficient. The proposed tracker is a sampling/importance resampling (SIR) filter that uses an optimized importance function to combat particle degeneracy, and also incorporates an additional measurement-driven Markov chain Monte Carlo (MCMC) move step to prevent particle impoverishment. Simulation results show that, using significantly fewer particles than previously reported in the literature for similar tracking problems, the root mean-square error (RMSE) curves for the proposed optimized SIR filter approach the square root of the ideal posterior Cramer-Rao lower bound (PCRLB).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improved sequential Monte Carlo filtering for ballistic target tracking


    Beteiligte:
    Bruno, M.G.S. (Autor:in) / Pavlov, A. (Autor:in)


    Erscheinungsdatum :

    01.07.2005


    Format / Umfang :

    1236447 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Sequential Monte Carlo Filtering for Multi-Aspect Detection/Tracking

    Bruno, M. G. S. / de Arajo, R. V. / Pavlov, A. G. et al. | British Library Conference Proceedings | 2005



    6.0502 Tracking a Ballistic Re-entry Vehicle with a Sequential Monte-Carlo Filter

    Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2002