This paper deals with problem of the real-time freeway traffic density estimation/prediction for a jump Markov linear model based on Daganzo's cell transmission variant of the Lighthill-Whitham-Richards continuous macroscopic freeway model. To solve the problem we propose a particle-filtering-based estimation/prediction method. Its performance is illustrated on case studies involving a four-cell freeway segment. The case studies suggest that the proposed methodology can be used for real-time traffic density estimation/prediction. Possible pitfalls of our approach are also discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On freeway traffic density estimation for a jump Markov linear model based on Daganzo's cell transmission model


    Beteiligte:


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    935429 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Freeway traffic flow prediction based on hidden Markov model

    Jiang, Jiyang / Guo, Tangyi / Pan, Weipeng et al. | British Library Conference Proceedings | 2022


    Freeway traffic flow prediction based on hidden Markov model

    Jiang, Jiyang / Guo, Tangyi / Pan, Weipeng et al. | SPIE | 2022



    Markov models for multi-lane freeway traffic

    Schach, Siegfried | Elsevier | 1969


    Distributed state-observer-based traffic density estimation of urban freeway network

    Guo, Yuqi / Chen, Yangzhou / Li, Wei et al. | IEEE | 2017