Drones have been introduced into urban environments to facilitate our life such as cargo delivery services. However, the densely located buildings in urban areas pose challenges for safe drone operations due to the collision risk with buildings. To address this challenge, we propose a path planning method that leverages an improved ant colony optimization (IACO) algorithm. The algorithm improves the standard setting of ACO with an adaptive parameter mechanism and an update mechanism of pheromone intensity. A further improvement is made by introducing a rapidly exploring random tree (RRT) based mechanism to improve the search efficiency. Simulation results demonstrate that our proposed method significantly increases the convergence rate and the quality of solutions for path planning in complex city environments. It can consistently produce satisfactory solutions with a more rapid convergence rate in both two-dimensional and three-dimensional environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Path Planning for Drone Delivery in Dense Building Environments


    Beteiligte:
    Hu, Xinting (Autor:in) / Wu, Yu (Autor:in) / Pang, Bizhao (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    530080 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DRONE PATH PLANNING

    ALDANA LOPEZ RODRIGO / CAMPOS MACIAS LEOBARDO / GOMEZ GUTIERREZ DAVID et al. | Europäisches Patentamt | 2019

    Freier Zugriff

    Drone path planning

    ALDANA LOPEZ RODRIGO / CAMPOS MACIAS LEOBARDO / GOMEZ GUTIERREZ DAVID et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Low Overhead Drone Relaying in Dense Urban and Suburban Environments

    Ashraf, Mateen / Tan, Bo / Valkama, Mikko | IEEE | 2022