Deep learning has proven to be an effective tool in predictive analytics due to its ability to understand patterns in large data sets. Supervised Deep learning techniques are utilized to understand the relationships between electric motor aging and the sensor parameters from the same. This approach overcomes the challenge of the requirements of high quality labeled data which are both time consuming and difficult to acquire. Thus, use of supervised deep learning methods has the potential to deploy RUL models with minimal training data. This paper focuses on the implementation of deep learning methods for Remaining Useful Life prediction for electric motor. Keywords—Deep learning, Remaining Useful Life, RUL, Feed Forward Neural Networks


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Estimation of Remaining Useful Life of Electric Motor using supervised deep learning methods


    Beteiligte:
    Kewalramani, Rohit (Autor:in) / A, Ram (Autor:in)


    Erscheinungsdatum :

    01.12.2019


    Format / Umfang :

    1538243 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Learning Prediction for Bearing Remaining Useful Life

    Liu, Hui / Cheng, Fang / Li, Yanfei | Springer Verlag | 2025


    Remaining Useful Life Estimation in Aircraft Components with Federated Learning

    Rosero, Raúl Llasag / Silva, Catarina / Ribeiro, Bernardete | TIBKAT | 2020

    Freier Zugriff

    MOTOR FAULT DETECTION AND REMAINING USEFUL LIFE PREDICTION

    BARONIJAN ARMEN / LASKOVY ANDREW MICHAEL / SOMAYAJULA DEEPAK BALAJI et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Data-Driven Remaining Useful Life Estimation Using Gaussian Mixture Models

    Liu, Yixuan / Hu, Zhen / Todd, Michael et al. | AIAA | 2021