An approach to identifying targets from sequential high-range-resolution (HRR) radar signatures is presented. In particular, a hidden Markov model (HMM) is employed to characterize the sequential information contained in multiaspect HRR target signatures. Features from each of the HRR waveforms are extracted via the RELAX algorithm. The statistical models used for the HMM states are formulated for application to RELAX features, and the expectation-maximization (EM) training algorithm is augmented appropriately. Example classification results are presented for the ten-target MSTAR data set.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Identification of ground targets from sequential high-range-resolution radar signatures


    Beteiligte:
    Xuejun Liao, (Autor:in) / Runkle, P. (Autor:in) / Carin, L. (Autor:in)


    Erscheinungsdatum :

    01.10.2002


    Format / Umfang :

    676812 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch