Effective traffic flow prediction has important guiding significance to solve the problems of intelligent transportation system. Based on the historical traffic flow data of observation points and deep learning model, this paper proposes a short-term traffic flow prediction model based on recurrent neural network (RNN). In this model, we use three different RNN structural units (LSTM, GRU, SAEs) to realize the model construction and training. Through experiments on real traffic data, we found that the cyclic neural network has a good prediction effect on specific road traffic flow, which can achieve the purpose of short-term prediction, and has a better practicability. Among the three cyclic neural network structures, LSTM has a smaller prediction error.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Short-term Traffic Flow Prediction Based on Recurrent Neural Network


    Beteiligte:
    Li, Zhijie (Autor:in) / Li, Chenghao (Autor:in) / Cui, Xu (Autor:in) / Zhang, Zhenguo (Autor:in)


    Erscheinungsdatum :

    07.05.2021


    Format / Umfang :

    9577526 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Short-term traffic flow prediction with LSTM recurrent neural network

    Kang, Danqing / Lv, Yisheng / Chen, Yuan-yuan | IEEE | 2017


    Short-term traffic flow prediction method based on graph convolution recurrent neural network

    GU JUNHUA / GUO RUIZHE / HE WENYING et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Time Slot Recurrent Neural Networks for Short-Term Traffic Flow Prediction

    Qu, Licheng / Qie, Liyuan / Li, Xinze et al. | IEEE | 2022