In this article, we present a method for increasing adaptivity of an existing robust estimation algorithm by learning two parameters to better fit the residual distribution. The analyzed method uses these two parameters to calculate weights for iterative reweighted least squares. This adaptive nature of the weights can be helpful in situations where the noise level varies in the measurements. We test our algorithm first on the point cloud registration problem with synthetic datasets and light detection and ranging (LiDAR) odometry with open source real-world datasets. We show that the existing approach needs an additional manual tuning of a residual scale parameter, which our method directly learns from data and has similar or better performance. We further present the idea of decoupling scale and shape parameters to improve the performance of the algorithm. We give detailed analysis of our algorithm along with its comparison with similar well-known algorithms from literature to show the benefits of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of Scale-Variant Robust Kernel Optimization for Nonlinear Least-Squares Problems


    Beteiligte:
    Das, Shounak (Autor:in) / Gross, Jason N. (Autor:in)


    Erscheinungsdatum :

    01.12.2023


    Format / Umfang :

    1521308 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Robust nonlinear least squares estimation using the Chow-Yorke homotopy method

    DUNYAK, J. P. / JUNKINS, J. L. / WATSON, L. T. | AIAA | 1984


    Least squares support kernel machines ( LS-SKM ) for identification

    Tarhouni,M. / Zidim,S. / Laabidi,K. et al. | Kraftfahrwesen | 2012