In the unmanned aerial vehicle (UAV)-enabled wireless charging sensor networks systems, the UAV is able to replace the base station for data collection. Each deployed sensor and the data it collects have their own unique values. Therefore, the UAV should collect as much data as possible from different sensors. We formulated the UAV trajectory planning problem with the goal of maximizing the amount of data collected. Due to the time-varying character of the WSNs and the immediacy of UAV path planning, we apply deep reinforcement Learning (DRL) technique to tackle this challenge. In order to collect as much data as possible, we used a Double Deep Q-Network (DDQN) with a data collection action selection strategy. The simulation results show that compared to the DQN algorithm, the DDQN algorithm guided drone access instructions can collect more data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Reinforcement Learning-Based UAV Path Planning Algorithm


    Beteiligte:
    Wang, Kunfu (Autor:in) / Hui, Ma (Autor:in) / Hou, Jiajun (Autor:in) / Song, Xiaming (Autor:in)


    Erscheinungsdatum :

    20.09.2024


    Format / Umfang :

    601210 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Research on path planning algorithm based on deep reinforcement learning

    Wang, Zhihao / Yan, Weiqiang / Yang, Mingjun | IEEE | 2024


    A Deep Reinforcement Learning-Based Path Planning Algorithm for Urban eVTOL Aircraft

    Liu, Wenjie / Wang, Weida / Yang, Chao et al. | IEEE | 2024


    Multi-Obstacle Path Planning using Deep Reinforcement Learning

    Morgan, Brandon / Trigg, Lena / Stringer, Alexander et al. | IEEE | 2024


    Unmanned Aerial Vehicles Path Planning Based on Deep Reinforcement Learning

    Wang, Guoqiu / Zheng, Xuanyu / Zhao, Haitong et al. | Springer Verlag | 2019


    Deep Reinforcement Learning-Based Local Path Planning with Memory-Guided

    Wang, Xu / Xu, Xiaobin / Lin, Shiyao et al. | Springer Verlag | 2025