Map-based methods for autonomous racing estimate the vehicle’s location, which is used to follow a high-level plan. While map-based methods demonstrate high-performance results, they are limited by requiring a map of the environment. In contrast, mapless methods can operate in unmapped contexts since they directly process raw sensor data (often LiDAR) to calculate commands, but suffer from poor performance. In response, we propose the local map framework that uses easily extractable, low-level features to build local maps of the visible region that form the input to optimisation-based trajectory planners. Our local map generation extracts the visible racetrack boundaries and calculates a centre line and track widths used for planning. We evaluate our method for simulated F1Tenth autonomous racing using a trajectory optimisation and tracking strategy and a model predictive controller. Our method achieves lap times that are 8.8% faster than the Follow-The-Gap method and 3.22% faster than end-to-end neural networks due to the optimisation resulting in a faster speed profile. The local map planner is 3.28% slower than global methods that have access to an entire map of the track that can be used for planning. Critically, our approach enables high-speed autonomous racing on unmapped tracks, achieving performance similar to global methods without requiring a track map.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    High-performance Racing on Unmapped Tracks using Local Maps




    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1665962 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Solutions for racing tracks system

    LEE HO JONG / KIM JAE WOO | Europäisches Patentamt | 2022

    Freier Zugriff

    Unmapped U-turn behavior prediction using machine learning

    GOYAL VISHU / ZHANG SHEN | Europäisches Patentamt | 2025

    Freier Zugriff

    UNMAPPED U-TURN BEHAVIOR PREDICTION USING MACHINE LEARNING

    GOYAL VISHU / ZHANG SHEN | Europäisches Patentamt | 2022

    Freier Zugriff

    Safe path planning and replanning with unmapped objects detection

    Lambert, A. / Gruyer, D. / Mangeas, M. et al. | IEEE | 2002


    Control of an autonomous vehicle in unmapped regions

    KENTLEY-KLAY TIMOTHY DAVID | Europäisches Patentamt | 2021

    Freier Zugriff