The spatio-temporal distribution of electric vehicle charging loads is affected by the high uncertainty of road network traffic conditions. Therefore, the accuracy of prediction of charging load can be improved by combining the real-time road network traffic condition, which can provide a basis for the distribution network to cope with the charging load. We present a spatio-temporal charging load prediction method based on cellular traffic simulation. First, joint vehicle-road-network modeling and travel chain principles simulate user travel patterns. Next, a metacellular transmission model integrates traffic flow simulation to represent urban road dynamics, including vehicle behaviors (e.g., following, lane changes) and adaptive traffic flow updates. Road traffic indexes are derived, and an EV energy consumption model incorporating traffic parameters predicts charging load distribution. Simulation in a Hunan urban area validates the method’s feasibility.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A spatio-temporal prediction method for charging load considering metric traffic flow simulation


    Beteiligte:
    Zheng, Hongrui (Autor:in) / Jiang, Fei (Autor:in) / Liu, Ming (Autor:in) / Lu, Xvdong (Autor:in) / He, Ruizhi (Autor:in) / Yang, Xin (Autor:in) / Li, Zhonglong (Autor:in)


    Erscheinungsdatum :

    18.04.2025


    Format / Umfang :

    1429950 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Prediction of temporal and spatial distribution of electric vehicle charging load considering traffic flow

    Xu, Tingting / Hu, Xiaorui / Zhou, Bin et al. | British Library Conference Proceedings | 2022



    Traffic flow prediction method for traffic flow spatio-temporal data information

    LIU PENG / CHU YUQUAN | Europäisches Patentamt | 2024

    Freier Zugriff

    Spatio-Temporal AutoEncoder for Traffic Flow Prediction

    Liu, Mingzhe / Zhu, Tongyu / Ye, Junchen et al. | IEEE | 2023


    Short-term traffic congestion prediction with Conv–BiLSTM considering spatio-temporal features

    Li, Tao / Ni, Anning / Zhang, Chunqin et al. | IET | 2021

    Freier Zugriff